首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynameomics: Data‐driven methods and models for utilizing large‐scale protein structure repositories for improving fragment‐based loop prediction
Authors:Steven J Rysavy  David AC Beck  Valerie Daggett
Institution:1. Division of Biomedical and Health Informatics, University of Washington, , Seattle, Washington;2. Department of Chemical Engineering and eScience Institute, University of Washington, , Seattle, Washington;3. Department of Bioengineering, University of Washington, , Seattle, Washington
Abstract:Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment‐based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ~25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root‐mean‐square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments .
Keywords:dynamic fragments  structure prediction  loop prediction  model building  backbone dynamics  loop ensemble
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号