首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stabilization of the integrase‐DNA complex by Mg2+ ions and prediction of key residues for binding HIV‐1 integrase inhibitors
Authors:Lamia Miri  Guillaume Bouvier  Anass Kettani  Afaf Mikou  Lahcen Wakrim  Michael Nilges  Thérèse E Malliavin
Institution:1. Laboratoire de Virologie, Institut Pasteur du Maroc, , Casablanca, 20360 Morocco;2. Unité de modélisation moléculaire et d'ingénierie des biomolécules, Laboratoire de recherche sur les lipoprotéines et l'athérosclérose, Unité Associée au CNRST‐URAC34, Faculté des Sciences Ben M'Sik, , Casablanca, Morocco;3. Unité de Bioinformatique Structurale, UMR 3528 CNRS, Institut Pasteur, , Paris, 75724 France;4. Laboratoire de Catalyse et environnement, Faculté des Sciences Ain Chock, , Casablanca, Morocco
Abstract:The HIV‐1 integrase is an attractive target for the therapeutics development against AIDS, as no host homologue of this protein has been identified. The integrase strand transfer inhibitors (INSTIs), including raltegravir, specifically target the second catalytic step of the integration process by binding to the DDE motif of the catalytic site and coordinating Mg2+ ions. Recent X‐ray crystallographic structures of the integrase/DNA complex from prototype foamy virus allowed to investigate the role of the different partners (integrase, DNA, Mg2+ ions, raltegravir) in the complex stability using molecular dynamics (MD) simulations. The presence of Mg2+ ions is found to be essential for the stability, whereas the simultaneous presence of raltegravir and Mg2+ ions has a destabilizing influence. A homology model of HIV‐1 integrase was built on the basis of the X‐ray crystallographic information, and protein marker residues for the ligand binding were detected by clustering the docking poses of known HIV‐1 integrase inhibitors on the model. Interestingly, we had already identified some of these residues to be involved in HIV‐1 resistance mutations and in the stabilization of the catalytic site during the MD simulations. Classification of protein conformations along MD simulations, as well as of ligand docking poses, was performed by using an original learning method, based on self‐organizing maps. This allows us to perform a more in‐depth investigation of the free‐energy basins populated by the complex in MD simulations on the one hand, and a straightforward classification of ligands according to their binding residues on the other hand. Proteins 2014; 82:466–478. © 2013 Wiley Periodicals, Inc.
Keywords:HIV‐1  integrase  self‐organizing map  classification  molecular dynamics simulation  docking  raltegravir
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号