首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intrinsic α‐helical and β‐sheet conformational preferences: A computational case study of alanine
Authors:Diego Caballero  Jukka Määttä  Alice Qinhua Zhou  Maria Sammalkorpi  Corey S O'Hern  Lynne Regan
Institution:1. Department of Physics, Yale University, , New Haven, Connecticut, 06520;2. Integrated Graduate Program in Physical and Engineering Biology, Yale University, , New Haven, Connecticut, 06520;3. Department of Chemistry, Aalto University, , 02150 Espoo, Finland;4. Department of Molecular Biophysics and Biochemistry, Yale University, , New Haven, Connecticut, 06520;5. Department of Mechanical Engineering and Materials Science, Yale University, , New Haven, Connecticut, 06520;6. Department of Applied Physics, Yale University, , New Haven, Connecticut, 06520;7. Department of Chemistry, Yale University, , New Haven, Connecticut, 06520
Abstract:A fundamental question in protein science is what is the intrinsic propensity for an amino acid to be in an α-helix, β-sheet, or other backbone dihedral angle (-ψ) conformation. This question has been hotly debated for many years because including all protein crystal structures from the protein database, increases the probabilities for α-helical structures, while experiments on small peptides observe that β-sheet-like conformations predominate. We perform molecular dynamics (MD) simulations of a hard-sphere model for Ala dipeptide mimetics that includes steric interactions between nonbonded atoms and bond length and angle constraints with the goal of evaluating the role of steric interactions in determining protein backbone conformational preferences. We find four key results. For the hard-sphere MD simulations, we show that (1) β-sheet structures are roughly three and half times more probable than α-helical structures, (2) transitions between α-helix and β-sheet structures only occur when the backbone bond angle τ (N–Cα–C) is greater than 110°, and (3) the probability distribution of τ for Ala conformations in the “bridge” region of-ψ space is shifted to larger angles compared to other regions. In contrast, (4) the distributions obtained from Amber and CHARMM MD simulations in the bridge regions are broader and have increased τ compared to those for hard sphere simulations and from high-resolution protein crystal structures. Our results emphasize the importance of hard-sphere interactions and local stereochemical constraints that yield strong correlations between -ψ conformations and τ.
Keywords:alanine  backbone conformations  hard‐sphere  simulations  Amber  CHARMM  α  ‐helix  β  ‐sheet  instrinsic propensity  T‐angle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号