首页 | 本学科首页   官方微博 | 高级检索  
     


Architecture and function of metallopeptidase catalytic domains
Authors:Núria Cerdà‐Costa  Francesc Xavier Gomis‐Rüth
Affiliation:Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, , Barcelona, Spain
Abstract:The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single‐step reaction involving a solvent molecule, a general base/acid, and a mono‐ or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal‐binding motif (HEXXH), which includes two metal‐binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ~130–270‐residue catalytic domains, which are usually preceded by N‐terminal pro‐segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C‐terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N‐terminal subdomain spanning a five‐stranded β‐sheet, a backing helix, and an active‐site helix. The latter contains most of the metal‐binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C‐terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met‐turn—and a C‐terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.
Keywords:structural biochemistry  metzincin clan  catalytic domains  active‐site cleft  hydrolytic enzymes  matrix metalloproteases  astacins  ADAM  adamalysins  serralysins  metalloprotease  metalloproteinase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号