首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax
Authors:Dennis S Friis  Johannes L Johnsen  Erlend Kristiansen  Peter Westh  Hans Ramløv
Institution:Department of Science, Systems and Models, Roskilde University, , DK‐4000 Roskilde, Denmark
Abstract:The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths of the ice binding motifs; high melting temperature AFPs (high disulfide content, TxT motifs), low melting temperature but high refolding capability AFPs (one disulfide bridge, TxTxTxT motifs) and irreversibly unfolded AFPs at low temperatures (no disulfide bridges, TxTxTxTxT motifs). The property of being able to cope with high temperature exposures may appear peculiar for proteins which strictly have their effect at subzero temperatures. Different aspects of this are discussed.
Keywords:antifreeze protein  thermodynamics  differential scanning calorimetry  circular dichroism  refolding  protein melting temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号