首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expansion of the APC superfamily of secondary carriers
Authors:Ake Vastermark  Simon Wollwage  Michael E Houle  Rita Rio  Milton H Saier Jr
Institution:1. Department of Molecular Biology, University of California at San Diego, , La Jolla, California, 92093‐0116;2. National Institute of Informatics, , Chiyoda‐Ku, Tokyo, 101‐8430 Japan;3. Department of Biology, West Virginia University, , Morgantown, West Virginai, 26505
Abstract:The amino acid‐polyamine‐organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance‐Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K+ Uptake Permease), BenE (Benzoate:H+ Virginia Symporter), and AE (Anion Exchanger). The topology of the well‐characterized human Anion Exchanger 1 (AE1) conforms to a UraA‐like topology of 14 TMSs (12 α‐helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT‐like fold, defined earlier (Proteins. 2014 Feb;82(2):336‐46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations. Proteins 2014; 82:2797–2811. © 2014 Wiley Periodicals, Inc.
Keywords:superfamily tree  transporter classification database  amino acid‐polyamine‐organoCation (APC) superfamily  anion exchanger 1  carbon starvation A protein
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号