首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations
Authors:Beibei Wang  Jingwei Weng  Wenning Wang
Institution:1. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, , Shanghai, People's Republic of China;2. Institutes of Biomedical Sciences, Fudan University, , Shanghai, People's Republic of China
Abstract:Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt‐bridge R367–D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate. Proteins 2014; 82:2169–2179. © 2014 Wiley Periodicals, Inc.
Keywords:TolC  outer membrane protein  MD simulation  conformational change
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号