首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel unstructured scaffold based on 4EBP1 enables the functional display of a wide range of bioactive peptides
Authors:See Hai Yun  Lane David P
Institution:
  • p53 Laboratory (A?STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
  • Abstract:Target validation using protein aptamers enables the characterization of a specific function of a target protein in an environment that resembles native conditions as closely as possible. A major obstacle to the use of this technology has been the generation of bioactive aptamers, which is dependent on the choice of scaffold. Constraining binding peptides within a particular scaffold does not necessarily result in binding aptamers, as suboptimal presentation of peptides can occur. It is therefore understandable that different peptides might require different scaffolds for optimal presentation. In this article, we describe a novel scaffold protein that bypasses the conventional requirement for scaffolds to have known rigid structures and yet successfully presents several peptides that need to adopt a wide range of conformations for binding to their target protein. Using an unstructured protein, 4EBP1, as scaffold, we successfully construct binding aptamers to three different target proteins: Mdm2, proliferating cell nuclear antigen, and cyclin A. The Mdm2-binding aptamer constructed using 4EBP1 as scaffold demonstrates better stability and bioactivity compared to that constructed using thioredoxin as scaffold. This new scaffold protein, which makes it relatively easy to create bioactive aptamers based on known interaction sequences, will greatly facilitate the aptamer approach to target validation.
    Keywords:protein aptamer scaffold  4EBP1  PCNA  cyclin  Mdm2
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号