Structural and Biochemical Characterization of a Halophilic Archaeal Alkaline Phosphatase |
| |
Authors: | Andy Wende Martin Grininger |
| |
Affiliation: | Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany |
| |
Abstract: | Phosphate is an essential component of all cells that must be taken up from the environment. Prokaryotes commonly secrete alkaline phosphatases (APs) to recruit phosphate from organic compounds by hydrolysis. In this study, the AP from Halobacterium salinarum, an archaeon that lives in a saturated salt environment, has been functionally and structurally characterized. The core fold and the active-site architecture of the H. salinarum enzyme are similar to other AP structures. These generally form dimers composed of dominant β-sheet structures sandwiched by α-helices and have well-accessible active sites. The surface of the enzyme is predicted to be highly negatively charged, like other proteins of extreme halophiles. In addition to the conserved core, most APs contain a crown domain that strongly varies within species. In the H. salinarum AP, the crown domain is made of an acyl-carrier-protein-like fold. Different from other APs, it is not involved in dimer formation. We compare the archaeal AP with its bacterial and eukaryotic counterparts, and we focus on the role of crown domains in enhancing protein stability, regulating enzyme function, and guiding phosphoesters into the active-site funnel. |
| |
Keywords: | AP, alkaline phosphatase Pi, inorganic phosphate ECAP, Escherichia coli AP TAP, Tab5 AP VAP, Vibrio AP PLAP, human placenta AP SAP, shrimp AP HSAP, Halobacterium salinarum AP ORF, open reading frame Tat, twin arginine translocation pNpp, p-nitrophenyl phosphate ACP, acyl carrier protein PDB, Protein Data Bank |
本文献已被 ScienceDirect 等数据库收录! |
|