首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromatin reconstitution on small DNA rings. IV. DNA supercoiling and nucleosome sequence preference.
Authors:I Duband-Goulet  V Carot  A V Ulyanov  S Douc-Rasy  A Prunell
Institution:Institut Jaques Monod, Centre National de la Recherche Scientifique and Université, Paris, France.
Abstract:Nucleosome formation on inverted repeats or on some alternations of purines and pyrimidines can be inhibited in vitro by DNA supercoiling through their supercoiling-induced structural transitions to cruciforms or Z-form DNA, respectively. We report here, as a result of study of single nucleosome reconstitutions on a DNA minicircle, that a physiological level of DNA supercoiling can also enhance nucleosome sequence preference. The 357 base-pair minicircle was composed of a promoter of phage SP6 RNA polymerase joined to a 256 base-pair fragment containing a sea urchin 5 S RNA gene. Nucleosome formation on the promoter was found to be enhanced on a topoisomer with in vivo superhelix density when compared to topoisomers of lower or higher superhelical densities, to the nicked circle, or to the linear DNA. In contrast, nucleosomes at other positions appeared to be insensitive to supercoiling. This observation relied on a novel procedure for the investigation of nucleosome positioning. The reconstituted circular chromatin was first linearized using a restriction endonuclease, and the linear chromatin so obtained was electrophoresed as nucleoprotein in a polyacrylamide gel. The gel showed well-fractionated bands whose mobilities were a V-like function of nucleosome positions, with the nucleosome near the middle migrating less. This behavior is similar to that previously observed for complexes of sequence-specific DNA-bending proteins with circularly permuted DNA fragments, and presumably reflects the change in the direction of the DNA axis between the entrance and the exit of the particle. Possible mechanisms for such supercoiling-induced modulation of nucleosome formation are discussed in the light of the supercoiling-dependent susceptibility to cleavage of the naked minicircle with S1 and Bal31 nucleases; and a comparison between DNase I cleavage patterns of the modulated nucleosome and of another, non-modulated, overlapping nucleosome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号