首页 | 本学科首页   官方微博 | 高级检索  
     


Erythrocyte spectrin alteration induced by low-density lipoprotein
Authors:David Y. Hui  Judith A. K. Harmony
Abstract:Addition of human plasma low-density lipoproteins (LDL) to intact human erythrocytes induces the erythrocytes to undergo morphologic transition from biconcave disks to echinocytes and spherocytes. The transformation is time-dependent. Two hours are required before echinocytes are detected by scanning electron microscopy. After two hours, LDL also decrease the phosphate content of spectrin by 40% relative to the control, suggesting that these lipoproteins modulate cell shape by influencing phosphorylationdephosphorylation of a membrane-associated cytoskeletal protein. LDL do not induce depletion of intracellular adenosine triphosphate (ATP), nor do they inhibit cyclic adenosine monophosphate-independent protein kinases which phosphorylate spectrin. LDL stimulate membrane-bound phosphatases by a factor of two, thereby reducing the amount of phosphate covalently bound to membrane proteins. The observed effects are specific for LDL. High-density lipoproteins (HDL) do not stimulate dephosphorylation of spectrin or alter erythrocyte morphology. However, HDL protect the erythrocytes against LDL-induced alterations. These data suggest that the circulating lipoproteins have a role in maintaining erythrocyte morphology by regulating the extent of phosphorylation of spectrin.
Keywords:plasma lipoproteins  erythrocyte morphology  erythrocyte phosphatase  spectrin phosphorylation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号