首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue-Spanning Redox Gradient-Dependent Assembly of Native Human Papillomavirus Type 16 Virions
Authors:Michael J. Conway  Samina Alam  Eric J. Ryndock  Linda Cruz  Neil D. Christensen  Richard B. S. Roden  Craig Meyers
Affiliation:Departments of Microbiology and Immunology,1. Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033,2. Department of Pathology, Johns Hopkins University, 733 N. Broadway, Baltimore, Maryland 212053.
Abstract:Papillomavirus capsids are composed of 72 pentamers reinforced through inter- and intrapentameric disulfide bonds. Recent research suggests that virus-like particles and pseudovirions (PsV) can undergo a redox-dependent conformational change involving disulfide interactions. We present here evidence that native virions exploit a tissue-spanning redox gradient that facilitates assembly events in the context of the complete papillomavirus life cycle. DNA encapsidation and infectivity titers are redox dependent in that they can be temporally modulated via treatment of organotypic cultures with oxidized glutathione. These data provide evidence that papillomavirus assembly and maturation is redox-dependent, utilizing multiple steps within both suprabasal and cornified layers.Human papillomaviruses (HPVs) exclusively infect cutaneous or mucosal epithelial tissues (14, 15, 30). HPV types that infect the mucosal epithelia can lead to the development of benign or malignant neoplasms, thus allowing for their categorization into low-risk or high-risk HPV types, respectively (14, 15, 30). A small subset of the more than 200 HPV types now identified are the causative agents of over 75% of all cervical cancers. HPV16 is the most prevalent type worldwide, found in ca. 50 to 62% of squamous cell carcinomas (14, 50).HPV16 virions contain a single, circular double-stranded DNA genome of ∼8 kb which associates with histones to form a chromatin-like structure. This minichromosome is packaged within a nonenveloped, icosahedral capsid composed of the major capsid protein L1 and the minor capsid protein L2. Similar to polyomaviruses, 72 capsomeres of L1 are geometrically arranged on a T=7 icosahedral lattice (2, 9, 17, 19, 36, 42). Recent cryoelectron microscopy images of HPV16 pseudovirions (PsV) suggest that L2 is arranged near the inner conical hollow of each L1 pentamer, although it is not known whether each L1 pentamer is occupied with a single L2 protein (5, 42).Due to technical constraints in the production of native HPV virions in organotypic culture, assembly studies of HPV particles have largely been restricted to the utilization of in vitro-derived particles such as virus-like particles (VLPs), PsV, and quasivirions (QV) (6, 12, 25, 40, 43). Recent research suggests that HPV and bovine papillomavirus PsV can undergo a redox-dependent conformational change that takes place over the course of many hours. This conformational change is characterized by resistance to proteolysis and chemical reduction and the appearance of a more orderly capsid structure via transmission electron microscopy (TEM) (7, 20).We present evidence that native virions, in the context of the complete papillomavirus life cycle, utilize a tissue-spanning redox gradient that facilitates multiple redox-dependent assembly and maturation events over the course of many days. We show that stability and specific infectivity of 20-day virions increases over 10-day virions, 20-day virions are more susceptible to neutralization than 10-day virions, and both viral DNA encapsidation and infectivity of HPV-infected tissues are redox dependent in that they can be manipulated via the treatment of organotypic tissues with oxidized glutathione (GSSG), which is concentration and temporally dependent.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号