首页 | 本学科首页   官方微博 | 高级检索  
     


Isolation,Diversity, and Antimicrobial Activity of Rare Actinobacteria from Medicinal Plants of Tropical Rain Forests in Xishuangbanna,China
Authors:Sheng Qin  Jie Li  Hua-Hong Chen  Guo-Zhen Zhao  Wen-Yong Zhu  Cheng-Lin Jiang  Li-Hua Xu  Wen-Jun Li
Affiliation:Key Laboratory for Microbial Resources of the Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091,1. Department of Chemistry, Chuxiong Normal College, Chuxiong, Yunnan 675000, People''s Republic of China2.
Abstract:Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.The class Actinobacteria accounts for a high proportion of soil microbial biomass and contains the most economically significant prokaryotes, producing more than half of the bioactive compounds in a literature survey (46), including antibiotics (6), immunosuppressive agents (55), antitumor agents (18), and enzymes (64). Actinobacteria belonging to the genus Streptomyces, in particular, are excellent producers. The emergence of drug resistance in many bacterial pathogens and the current increase in the number of fungal infections has caused a resurgence of interest in finding new reserves of biologically active compounds (63). As the search for novel natural products continues, it becomes apparent that the rate of discovery of new compounds from soil streptomycetes has decreased, whereas the rate of reisolation of known compounds has increased (28). Recently, evidence has accumulated that rare actinomycete species, which are often very difficult to isolate and cultivate, might represent a unique source of novel biologically active compounds (4). On the other hand, new microbial habitats need to be examined in the search for novel bioactive compounds. One biologically important but relatively overlooked niche is the inner tissues of higher plants. Early studies have demonstrated that some actinobacteria can form intimate associations with plants and colonize their inner tissues. Frankia species and Streptomyces scabies can penetrate their hosts and establish either pathogenic or endophytic associations (5, 24). The actinomycetes that reside in the tissues of living plants and do not visibly harm the plants are known as endophytic actinobacteria (37). These actinobacteria are relatively unstudied and are potential sources of novel natural products for exploitation in medicine, agriculture, and industry (73).Endophytic actinobacteria have attracted attention in recent years, with increasing reports of isolates from a range of plant types, including crop plants (cereals, such as wheat and rice, as well as potatoes, carrots, tomatoes, and citrus) (2, 16, 62, 71, 74, 80) and medicinal plants (75, 88). The culturable endophytic actinobacteria from these plants were found to fall within a narrow species distribution: Streptomyces spp. were the predominant species, and Microbispora, Micromonospora, Nocardioides, Nocardia, and Streptosporangium were the common genera. Endophytic actinobacteria have been demonstrated to improve and promote the growth of host plants as well as to reduce disease symptoms caused by plant pathogens through various mechanisms, including the production of secondary metabolites, which are used in direct antagonism against pests and diseases (9, 10, 12), changes in host physiology (42), and the induction of systemic acquired resistance in plants (15). Another significant function found for these actinobacteria was antibiotic activity, suggesting that endophytic actinobacteria can be an interesting source for bioprospecting. New antibiotics from endophytic Streptomyces spp.—alnumycin, munumbicins A to D, and coronamycins—have been reported (7, 11). Recently, two novel antitumor anthraquinones, lupinacidins A and B, were isolated from a new endophytic Micromonospora sp. (43). Moreover, new species of endophytic actinobacteria have been increasingly reported (25, 35). Thus, endophytic actinobacteria are expected to be potential sources of new species and new bioactive agents.Of the myriad ecosystems on earth, those with the greatest general biodiversity seem also to have the greatest number and the greatest diversity of endophytes (73). Tropical and temperate rain forests are the most biologically diverse terrestrial ecosystems on earth and thus the greatest possible resource for the acquisition of novel microorganisms and their products (73). One area of enormous plant biodiversity is Xishuangbanna, located in the People''s Republic of China at the border with Myanmar. This area lies at the ecotone between the Asian tropics and subtropics and is dominated by tropical seasonal rain forests (87). Xishuangbanna contains more than 5,000 species of vascular plants, comprising 16% of China''s total plant diversity, and more than 3,000 are endemic species (53, 60), many of which have ethnobotanical histories. Until the present, little research was carried out to isolate endophytic actinobacteria and their secondary metabolites from Xishuangbanna (36, 86). In our long-term study of endophytic actinobacterial diversity and bioactive metabolites from tropical rain forest medicinal plants in Xishuangbanna, many bioactive endophytic Streptomyces spp. have been isolated (49). However, the work to date is insufficient to provide a general understanding of the diversity, distribution, and ecology of tropical rain forest endophytic actinobacteria and to facilitate further exploitation of the diverse functions of this novel microbial source.In the present study, the diversity of rare endophytic actinobacteria associated with medicinal plants from the tropical rain forest in Xishuangbanna was investigated by combining special culturing techniques. The selected isolates were also identified by 16S rRNA gene analysis. The overall aims of this study were (i) to analyze the actinobacterial community and reveal whether the rain forest investigated in Xishuangbanna represents a valuable source for abundant endophytic actinobacteria and new species, (ii) to evaluate the antimicrobial activities of these actinobacteria and the biosynthetic potential of related secondary metabolites, and (iii) to study the relationships between the taxa of these endophytic actinobacteria and the isolation methods applied.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号