首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Community Structure and Dynamics of Small Eukaryotes Targeted by New Oligonucleotide Probes: New Insight into the Lacustrine Microbial Food Web
Authors:Jean-Fran?ois Mangot  Cécile Lepère  Christophe Bouvier  Didier Debroas  Isabelle Domaizon
Institution:Université de Savoie, UMR 42 CARRTEL, F-73376 Le Bourget du Lac,1. Université Blaise Pascal, UMR 6023 LGME, F-63177 Aubière,2. INRA, UMR 42 CARRTEL, F-74200 Thonon les Bains,3. UPMC (Paris 06), UMR CNRS 7144, Station Biologique, Roscoff, France,5. Department of Biological Sciences, University of Warwick, Coventry, United Kingdom4.
Abstract:The seasonal dynamics of the small eukaryotic fraction (cell diameter, 0.2 to 5 μm) was investigated in a mesotrophic lake by tyramide signal amplification-fluorescence in situ hybridization targeting seven different phylogenetic groups: Chlorophyceae, Chrysophyceae, Cryptophyceae, Cercozoa, LKM11, Perkinsozoa (two clades), and Fungi. The abundance of small eukaryotes ranged from 1,692 to 10,782 cells ml−1. The dominant groups were the Chrysophyceae and the Chlorophyceae, which represented 19.6% and 17.9% of small eukaryotes, respectively. The results also confirmed the quantitative importance of putative parasites, Fungi and Perkinsozoa, in the small heterotrophic eukaryotic assemblage. The relative abundances recorded for the Perkinsozoa group reached as much as 31.6% of total targeted eukaryotes during the summer. The dynamics of Perkinsozoa clade 1 coincided with abundance variations in Peridinium and Ceratium spp. (Dinoflagellates), while the dynamics of Perkinsozoa clade 2 was linked to the presence of Dinobryon spp. (Chrysophyceae). Fungi, represented by chytrids, reached maximal abundance in December (569 cells ml−1) and were mainly correlated with the dynamics of diatoms, especially Melosira varians. A further new finding of this study is the recurrent presence of Cercozoa (6.2%) and LKM11 (4.5%) cells. This quantitative approach based on newly designed probes offers a promising means of in-depth analysis of microbial food webs in lakes, especially by revealing the phylogenetic composition of the small heterotrophic flagellate assemblage, for which an important fraction of cells are generally unidentified by classical microscopy (on average, 96.8% of the small heterotrophic flagellates were identified by the specific probes we used in this study).Recently developed molecular methods based on the amplification and sequencing of rRNA genes have made it possible to investigate picoeukaryote assemblage composition (pigmented or nonpigmented unicellular eukaryotes with cell diameters of <2 μm or <5 μm according to the studies) in various aquatic systems, independently of morphological identification and cultivation (14, 23, 27, 28, 29, 39). The essential role of picoplankton (both eukaryotic and prokaryotic) as a contributor to plankton biomass and to carbon and nutrient cycling has long been established (9), but the unexpected diversity among the smallest eukaryotes (cell diameters, <5 μm) was only recently revealed. Most of these data were obtained in oceanic systems, but a few recent studies conducted in lakes have also highlighted the broad diversity of 18S rRNA sequences affiliated with numerous phylogenetic groups: Chlorophyceae, Chrysophyceae, Cryptophyceae, Cercozoa, Fungi, Choanoflagellida, Bicosoecida, Ciliophora, Haptophyceae, Perkinsozoa, LKM11, Hyphochytridiomycota, Katablepharidaceae, Dinophyceae, and Eustigmatophyceae (22, 23, 24, 34). Thus, it has been possible to observe clear seasonal changes in small-eukaryote structure in an oligomesotrophic lake (23), and the lake-based studies generally report a dominance of heterotrophic cells within the lacustrine small-eukaryote assemblage. Moreover, the recurrent presence of sequences affiliated with parasitic groups has been highlighted in lakes of various trophic statuses (22, 23). Lepère et al. (25) reported the unexpected importance of two groups: first, fungi affiliated with two clades of chytrids known as parasites of various groups of microalgae; and second, members of the phylum Perkinsozoa belonging to two clades closely related to Perkinsus marinus and Parvilucifera infectans, which are parasites of bivalves and dinoflagellates, respectively (30), and whose systematic position has been controversial, since they are phylogenetically related to the Apicomplexa or the Dinoflagellata (6, 13).Although these data brought new insight into the structural diversity of lacustrine small eukaryotes, the relative importance, dynamics, and functional roles of these microorganisms from various phylogenetic groups are still largely unknown. We now need to research specific in situ abundances of previously undetected taxa. In this study, specially developed oligonucleotide probes, designed on the basis of molecular data obtained from sequencing (20, 21, 22, 23, 24, 25, 34), were used for fluorescence in situ hybridization (FISH) coupled with tyramide signal amplification (TSA) to investigate the composition, abundance, and dynamics of lacustrine small eukaryotes (<5 μm) in the mesotrophic Lake Bourget over 1 year. Special attention was paid to the dynamics of putative parasitic groups (Perkinsozoa, Fungi, Cercozoa).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号