首页 | 本学科首页   官方微博 | 高级检索  
     


Rapamycin Response in Tumorigenic and Non-Tumorigenic Hepatic Cell Lines
Authors:Rosa H. Jimenez  Joan M. Boylan  Ju-Seog Lee  Mirko Francesconi  Gastone Castellani  Jennifer A. Sanders  Philip A. Gruppuso
Affiliation:1. Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, Rhode Island, United States of America.; 2. Department of Systems Biology, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America.; 3. Interdepartmental Center “L. Galvani,” University of Bologna, Bologna, Italy.;University of Washington, United States of America
Abstract:

Background

The mTOR inhibitor rapamycin has anti-tumor activity across a variety of human cancers, including hepatocellular carcinoma. However, resistance to its growth inhibitory effects is common. We hypothesized that hepatic cell lines with varying rapamycin responsiveness would show common characteristics accounting for resistance to the drug.

Methodology/Principal Findings

We profiled a total of 13 cell lines for rapamycin-induced growth inhibition. The non-tumorigenic rat liver epithelial cell line WB-F344 was highly sensitive while the tumorigenic WB311 cell line, originally derived from the WB-F344 line, was highly resistant. The other 11 cell lines showed a wide range of sensitivities. Rapamycin induced inhibition of cyclin E–dependent kinase activity in some cell lines, but the ability to do so did not correlate with sensitivity. Inhibition of cyclin E–dependent kinase activity was related to incorporation of p27Kip1 into cyclin E–containing complexes in some but not all cell lines. Similarly, sensitivity of global protein synthesis to rapamycin did not correlate with its anti-proliferative effect. However, rapamycin potently inhibited phosphorylation of two key substrates, ribosomal protein S6 and 4E-BP1, in all cases, indicating that the locus of rapamycin resistance was downstream from inhibition of mTOR Complex 1. Microarray analysis did not disclose a unifying mechanism for rapamycin resistance, although the glycolytic pathway was downregulated in all four cell lines studied.

Conclusions/Significance

We conclude that the mechanisms of rapamycin resistance in hepatic cells involve alterations of signaling downstream from mTOR and that the mechanisms are highly heterogeneous, thus predicting that maintaining or promoting sensitivity will be highly challenging.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号