首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of Streptococcus mutans NS Adhesion to Glass with and without a Salivary Conditioning Film by Biosurfactant- Releasing Streptococcus mitis Strains
Authors:C G van Hoogmoed  M van der Kuijl-Booij  H C van der Mei  and H J Busscher
Abstract:The release of biosurfactants by adhering microorganisms as a defense mechanism against other colonizing strains on the same substratum surface has been described previously for probiotic bacteria in the urogenital tract, the intestines, and the oropharynx but not for microorganisms in the oral cavity. Two Streptococcus mitis strains (BA and BMS) released maximal amounts of biosurfactants when they were grown in the presence of sucrose and were harvested in the early stationary phase. The S. mitis biosurfactants reduced the surface tensions of aqueous solutions to about 30 to 40 mJ m−2. Biochemical and physicochemical analyses revealed that the biosurfactants released were glycolipids. An acid-precipitated fraction was extremely surfactive and was identified as a rhamnolipidlike compound. In a parallel-plate flow chamber, the number of Streptococcus mutans NS cells adhering to glass with and without a salivary conditioning film in the presence of biosurfactant-releasing S. mitis BA and BMS (surface coverage, 1 to 4%) was significantly reduced compared with the number of S. mutans NS cells adhering to glass in the absence of S. mitis. S. mutans NS adhesion in the presence of non-biosurfactant-releasing S. mitis BA and BMS was not reduced at all. In addition, preadsorption of isolated S. mitis biosurfactants to glass drastically reduced the adhesion of S. mutans NS cells and the strength of their bonds to glass, as shown by the increased percentage of S. mutans NS cells detached by the passage of air bubbles through the flow chamber. Preadsorption of the acid-precipitated fraction inhibited S. mutans adhesion up to 80% in a dose-responsive manner. These observations indicate that S. mitis plays a protective role in the oral cavity and protects against colonization of saliva-coated surfaces by cariogenic S. mutans.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号