首页 | 本学科首页   官方微博 | 高级检索  
     


A long‐term record of Nothofagus dominance in the southern Andes,Chile
Authors:William Pollmann
Abstract:Abstract The general model of regeneration dynamics in Nothofagus forests of southern South America could have value in community ecology if predictive relationships between disturbance history, functional traits and site attributes could be identified. Examined here is the proposal that on favourable sites shade‐intolerant Nothofagus are likely not to survive in competition with shade‐tolerant, broad‐leaved evergreen taxa of temperate rain forests, and persistence, thus, is dependent on periodic coarse‐scale disturbance. Comparison of stand dynamics of three old‐growth Nothofagus forests at different elevations in the southern Andes, Chile where deciduous Nothofagus alpina dominates the upper canopy, and examination of the life history trade‐offs of this variation were made. Stem density of all stems ≥5.0 cm d.b.h. was 233–303 stems per hectare, and basal area was 123.9–171.0 m2ha?1. Maximum lifespan of N. alpina was found to be greater than ca 640 years, exceeding all previously reported ages for this species in the region. Forests had a stable canopy composition for this long‐term, but some appeared to lack effective regeneration of N. alpina in recent years. Regeneration of N. alpina was generally greater in disturbed stands and higher elevation than in undisturbed stands and at lower elevation. Recruitment emerged to be strongly affected by competitive over‐ and understorey associates. There was a gradient of increasing dependence of N. alpina on disturbance towards the more productive end of the environment gradients, and hence less dependence of N. alpina on disturbance for its regeneration towards higher elevation. The study confirms that changes in forest composition may be explained by processes occurring in accordance with the predictions of the existing model of Nothofagus regeneration dynamics, providing stronger evidence specifically directed at mid‐tolerant N. alpina, and by factoring out regeneration dynamics on favourable sites. Thus, for N. alpina, trait differences probably contribute to the competitive advantage over its associates in productive habitats, and may be linked to small‐to‐intermediate‐sized disturbances which inevitably occur as older trees die, enabling N. alpina to persist in forests and therefore maintain species coexistence for the long‐term.
Keywords:coexistence  competition  dendroecology  forest dynamics  functional trait  persistence  predictive model  site attribute  storage effect  temperate South America
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号