首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of the ciliature of Tetrahymena thermophila: II. Spatial subdivision prior to cytokinesis
Authors:Joseph Frankel  EMarlo Nelsen  Elaine Martel
Institution:Department of Zoology, University of Iowa, Iowa City, Iowa 52242 USA
Abstract:The cell surface of Tetrahymena thermophila is made up of an anterior region in which virtually all basal bodies of ciliary rows are ciliated, and the remainder in which ciliated and unciliated basal bodies are fairly irregularly interspersed. This pattern persists through interfission development until the stage of appearance of the equatorial ring of gaps in the ciliary rows that marks the fission zone. The ciliation pattern then becomes subdivided, in large part through the rapid ciliation of contiguous basal bodies located posterior to the fission zone. We interpret this process as a wave of ciliation of preexisting basal bodies that propagates posteriorly from the site of the fission zone. The location, extent, and timing of the ciliation process are the same in inverted as in normally oriented ciliary rows, in spite of the fact that in inverted rows the visible fission zone gap is tardily formed and the local configuration of ciliature around this gap is abnormal. The putative ciliation wave thus does not depend directly upon the local manifestations of the fission zone. However, in a cell-division-arrest mutant, cdaA1, analyzed under conditions in which formation of fission-zone gaps is permanently prevented in some ciliary rows but not in all, it is found that the ciliation pattern becomes subdivided in those ciliary rows that express fission-zone gaps and fails to become subdivided in neighboring rows that fail to manifest gaps. We interpret this combination of findings to indicate that a signal localized at the cell equator initiates a set of polarized developmental events that simultaneously create and demarcate two cellular fields within what was previously one. We further suggest that the characteristic tandem cell division pattern of ciliates is fundamentally a process of segmentation, which might involve mechanisms of gradient subdivision analogous to those taking place during segmentation of insects and other multicellular organisms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号