首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Review: Model Peptides and the Physicochemical Approach to β-Amyloids
Authors:David G Lynn  Stephen C Meredith  
Abstract:β-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of β-amyloid fibrils poses a challenge because of the limited solubility of β-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of β-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as β-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10–35 of human β-amyloid and indicates that in fibrils, this peptide assumes a parallel β-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Aβ peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.
Keywords:Alzheimer's Disease  amyloid  β  -amyloid  β  -helices  β  -sheets  block copolymers  electron microscopy  model peptides  polyethylene glycol  small angle neutron scattering  small angle X-ray scattering  solid-state NMR
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号