首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of robust circadian oscillation of KaiC phosphorylation in vitro
Authors:Eguchi Kohei  Yoda Mitsumasa  Terada Tomoki P  Sasai Masaki
Institution:Department of Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Abstract:By incubating the mixture of three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro, T. Kondo and his colleagues in recent work reconstituted the robust circadian rhythm of the phosphorylation level of KaiC. This finding indicates that protein-protein interactions and the associated hydrolysis of ATP suffice to generate the circadian rhythm. Several theoretical models have been proposed to explain the rhythm generated in this “protein-only” system, but the clear criterion to discern different possible mechanisms was not known. In this article, we discuss a model based on two basic assumptions: the assumption of the allosteric transition of a KaiC hexamer and the assumption of the monomer exchange between KaiC hexamers. The model shows a stable rhythmic oscillation of the phosphorylation level of KaiC, which is robust against changes in concentration of Kai proteins. We show that this robustness gives a clue to distinguish different possible mechanisms. We also discuss the robustness of oscillation against the change in the system size. Behaviors of the system with the cellular or subcellular size should shed light on the role of the protein-protein interactions in in vivo circadian oscillation.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号