首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Augmentation of soil detritus affects the spider community and herbivory in a soybean agroecosystem
Authors:Ann L Rypstra  & Samuel D Marshall
Institution:Department of Zoology, Miami University, 1601 Peck Blvd., Hamilton, Ohio 45011 USA
Abstract:If soil detritivores provide a significant prey source for predators in the vegetation, then augmentation of the soil community could affect the grazing food web. Specifically, increases in predator density could enhance any top‐down effects and reduce herbivory. We tested this hypothesis by providing detrital subsidies in the form of composted vegetable matter to 36 m2 plots in soybean, Glycine max (L.) Merr. (Fabales: Fabaceae), fields that were managed using either conventional or conservation tillage practices. The foliage‐dwelling spiders, insect predators, and leaf‐chewing insects were censused and the body size of one large spider species, Argiope trifasciata (Forskål) (Araneae: Araneidae), was measured. In addition, the density and size of the plants were assessed and leaf damage was quantified. Any effects of treatments on the palatability of soybean plants to herbivores were determined in two laboratory experiments. Compost increased the density of foliage dwelling spiders and the abdomen size of A. trifasciata. We uncovered no treatment effects on insect predators, herbivorous insects, or plant characteristics except that compost addition reduced leaf damage. In addition, there was a negative correlation across plots between spider abundance and soybean leaf damage and abdomen width of A. trifasciata and weed herbivory levels across plots. These results suggest a connection between the soil community and the foliage food web, but the spiders appear to have exerted a top‐down effect without a shift in herbivore abundance. Further study of the specific seasonality of the herbivores and their behavior in the presence of spiders are needed to uncover the underlying mechanism. Nevertheless, these results provide evidence for complex linkage between the soil and grazing food webs that may be important to biological control.
Keywords:soil subsidy  food web  top-down effect  generalist predator  trophic cascade  compost  conservation tillage  Araneae  Araneidae  Fabaceae
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号