首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of glucagon with artificial lipid bilayer membranes.
Authors:S Kimura  D Erne  R Schwyzer
Institution:Department of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), Zürich.
Abstract:The enhancement of fluorescence emission from the tryptophan residue of glucagon, the quenching of that emission with acrylamide and with 5-doxyl and 16-doxyl stearic acid, circular dichroism spectra, the release of 6-carboxyfluorescein, and polarized infrared attenuated total reflection (IR-ATR) spectra were used to study the interaction of glucagon with intact lipid vesicles and flat bilayers. Dimyristoylphosphatidylcholine bound the peptide only below the main transition temperature, thus confirming earlier results of Epand et al. (1977). However, the peptide is also bound by vesicles of unsaturated lipids above their transition temperature, suggesting an influence of lipid area on the binding process. Circular dichroism showed that binding to such vesicles also increases the helix content of glucagon. The IR-ATR study and a comparison with dynorphin-A-(1-13)-tridecapeptide revealed profound differences in orientation of the two peptides. The dichroic ratios and the derived order parameters indicated an isotropic orientation of the helical segments of glucagon, but did not exclude a principal orientation of the molecules lying flat on the membrane surface. In contrast, the axis of the dynorphin helix is clearly oriented normal to the interface. The two peptides also differ in their rates of 6-carboxyfluorescein release, suggesting a deeper penetration of the primary amphiphilic helix of dynorphin A-(1-13) than of the secondary amphiphilic helix of glucagon.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号