An Envelope Modification That Renders a Primary, Neutralization-Resistant Clade B Human Immunodeficiency Virus Type 1 Isolate Highly Susceptible to Neutralization by Sera from Other Clades |
| |
Authors: | Leonidas Stamatatos and Cecilia Cheng-Mayer |
| |
Affiliation: | Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10021-6399 |
| |
Abstract: | SF162 is a primary (PR), non-syncytium-inducing, macrophagetropic human immunodeficiency virus type 1 (HIV-1) clade B isolate which is resistant to antibody-mediated neutralization. Deletion of the first or second hypervariable envelope gp120 region (V1 or V2 loop, respectively) of this virus does not abrogate its ability to replicate in peripheral blood mononuclear cells and primary macrophages, nor does it alter its coreceptor usage profile. The mutant virus with the V1 loop deletion, SF162ΔV1, remains as resistant to antibody-mediated neutralization as the wild-type virus SF162. In contrast, the mutant virus with the V2 loop deletion, SF162ΔV2, exhibits enhanced susceptibility to neutralization by certain monoclonal antibodies whose epitopes are located within the CD4-binding site and conserved regions of gp120. More importantly, SF162ΔV2 is now up to 170-fold more susceptible to neutralization than SF162 by sera collected from patients infected with clade B HIV-1 isolates. In addition, it becomes susceptible to neutralization by sera collected from patients infected with clade A, C, D, E, and F HIV-1 isolates. These findings suggest that the V2, but not the V1, loop of SF162 shields an as yet unidentified region of the HIV envelope rich in neutralization epitopes and that the overall structure of this region appears to be conserved among clade B, C, D, E, and F HIV-1 PR isolates. |
| |
Keywords: | |
|
|