首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid effects of 1,25(OH)2 vitamin D3 on signal transduction systems in colonic cells.
Authors:M D Sitrin  M Bissonnette  M J Bolt  R Wali  S Khare  B Scaglione-Sewell  S Skarosi  T A Brasitus
Affiliation:Department of Medicine, University of Chicago, IL 60637, USA.
Abstract:Previous work from our laboratory demonstrated that 1,25(OH)2D3 rapidly stimulated hydrolysis of membrane polyphosphoinositides (PI) in rat colonocytes and in Caco-2 cells, generating the second messengers DAG and IP3. [Ca2+]i subsequently increased due to IP3-mediated release of intracellular Ca2+ stores, and to Ca2+ influx through a receptor-mediated Ca channel. Studies examining purified antipodal plasma membranes and experiments using Caco-2 cell monolayers found that 1,25(OH)2D3 influenced PI turnover only in the basolateral (BLM) and not brush border (BBM) membranes. Vitamin D analogues with poor affinity for the vitamin D receptor were found to effectively stimulate PI turnover, suggesting the presence of a unique vitamin D receptor in the BLM. Studies from our laboratory have demonstrated saturable, reversible binding of 1,25(OH)2 D3 to colonocyte BLM. Recently, we found that 1,25(OH)2D3 activated the tyrosine kinase c-src in colonocyte BLM by a heterotrimeric guanine nucleotide binding protein (G-protein)-dependent mechanism, with subsequent phosphorylation, translocation to the BLM, and activation of PI-specific phospholipase C gamma. Due to the rise in [Ca2+]i and DAG, two isoforms of protein kinase C (PKCalpha and PKCbeta2), but not other isoforms were activated by 1,25(OH)2D3 in rat colonocytes. Recent studies demonstrated that the seco-steroid translocated the beta2 isoform to the BLM, but not the BBM. In contrast, the alpha isoform did not translocate to either antipodal plasma membrane, but modulated IP3-mediated Ca2+ release from the endoplasmic reticulum. Preliminary studies have shown that 1,25(OH)2D3 also activated phosphatidylcholine phospholipase D (PLD) in Caco-2 cells, generating phosphatidic acid and contributing to the sustained rise in DAG. PLD stimulation occurred by both PKC-dependent and -independent mechanisms. Inhibitors of G-proteins, c-src, and PKC blunted the seco-steroid-mediated activation of PLD. Cells stably transfected with sense PKCalpha showed increased 1,25(OH)2D3-stimulated PLD activation, whereas transfectants with antisense PKCalpha had an attenuated response. In addition, 1,25(OH)2D3 also regulated PLD by activating the monomeric G-protein rho A by a mechanism independent of the G-protein/ c-src/PKC pathway.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号