首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays
Authors:Tristan Henser-Brownhill  Josep Monserrat
Institution:Cancer Epigenetics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
Abstract:The CRISPR-Cas9 system has revolutionized genome engineering, allowing precise modification of DNA in various organisms. The most popular method for conducting CRISPR-based functional screens involves the use of pooled lentiviral libraries in selection screens coupled with next-generation sequencing. Screens employing genome-scale pooled small guide RNA (sgRNA) libraries are demanding, particularly when complex assays are used. Furthermore, pooled libraries are not suitable for microscopy-based high-content screens or for systematic interrogation of protein function. To overcome these limitations and exploit CRISPR-based technologies to comprehensively investigate epigenetic mechanisms, we have generated a focused sgRNA library targeting 450 epigenetic regulators with multiple sgRNAs in human cells. The lentiviral library is available both in an arrayed and pooled format and allows temporally-controlled induction of gene knock-out. Characterization of the library showed high editing activity of most sgRNAs and efficient knock-out at the protein level in polyclonal populations. The sgRNA library can be used for both selection and high-content screens, as well as for targeted investigation of selected proteins without requiring isolation of knock-out clones. Using a variety of functional assays we show that the library is suitable for both in vitro and in vivo applications, representing a unique resource to study epigenetic mechanisms in physiological and pathological conditions.
Keywords:epigenetics  CRISPR  arrayed library  sgRNA  high-content  DNA methylation  cancer biology  chromatin  chromatin remodeling  histone modifications
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号