首页 | 本学科首页   官方微博 | 高级检索  
     


Controls on na influx in corn roots
Authors:Jacoby B  Hanson J B
Affiliation:Department of Plant Biology, University of Illinois, Urbana, Illinois 61801.
Abstract:We have investigated the effects of hyperpolarization and depolarization, and the presence of K+ and/or Ca2+, on 22Na+ influx into corn (Zea mays L.) root segments. In freshly excised root tissue which is injured, Na+ influx is unaffected by hyperpolarization with fusicoccin, or depolarization with uncoupler (protonophore), or by addition of K+. However, added Ca2+ suppresses Na+ influx by 60%. In washed tissue which has recovered, Na+ influx is doubled over that of freshly excised tissue, and the influx is increased by fusicoccin and suppressed by uncoupler. This energy-linked component of Na+ influx is completely eliminated by low concentrations of K+, leaving the same level and kind of Na+ influx seen in freshly excised roots. The K+-sensitive energy linkage appears to be by the carrier for active K+ influx. Calcium is equally inhibitory to Na+ influx in washed as in fresh tissue. Other divalent cations are only slightly less effective. Net Na+ uptake was about 25% of 22Na+ influx, but proportionately the response to K+ and Ca2+ was about the same.

The constancy of K+-insensitive Na+ influx under conditions known to hyperpolarize and depolarize suggests that if Na+ transport is by means of a voltage-sensitive channel, the rise or fall of channel resistance must be proportional to the rise or fall in potential difference. The alternative is a passive electroneutral exchange of 22Na+ for endogenous Na+. The data suggest that an inwardly directed Na+ current is largely offset by an efflux current, giving both a small net uptake and isotopic exchange.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号