Abstract: | In vitro and in vivo experiments indicate that the production of interleukin 2 (IL 2) by T lymphocytes is critical for the development of the effector phase of immunity. Complex cellular interactions are involved for the induction of IL 2 production. We have shown in a previous study that in humans monocytes can transmit opposite signals to the IL 2-producing cells. In addition to the positive signal delivered through the release of interleukin 1, human monocytes can deliver a negative signal through the release of prostaglandin E2 (PGE2). This monokine, known to activate suppressor mechanisms in several systems, was shown to inhibit IL 2 production. The data presented in this paper show that this PGE2-dependent inhibition is strictly dependent upon the presence of radiosensitive T cells in the culture, suggesting that PGE2 induces the activation of suppressor T cells modulating IL 2 production. Kinetics experiments indicate that these suppressor cells are radiosensitive during their induction phase but become radioresistant after 18 hr of incubation in the presence of PGE2. Successful in vitro induction of suppressor cells by incubation of enriched T cells with PGE2 was decisive for the analysis of the phenomenon. The induced suppressors were capable of inhibiting IL 2 production by fresh autologous T cells as well as inhibiting PHA proliferative response by these cells. A quantitative evaluation of IL 2 receptors on PGE2-treated cells has indicated that this absorption capacity was similar to the capacity of PBL known to express a low number of IL 2 receptors, thus excluding a suppression via absorption or competition for IL 2. No detectable killing of IL 2-producing cells by PGE2-induced suppressors was observed. The OKT4 and OKT8 phenotype of suppressor cells was examined. T cells were purified at two stages of differentiation before or after induction by PGE2 in vitro treatment. We conclude from these experiments that PGE2 activates suppressor cells among precursors segregating predominantly with the OKT8 subset and fewer cells with the OKT4 subset. After differentiation, however, the suppressor cells segregate with the OKT8 subset only. Such results were obtained by using positive selection (cellular affinity columns) and negative selection (monoclonal antibodies plus complement). |