首页 | 本学科首页   官方微博 | 高级检索  
     


Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase
Authors:Govindarajan Baskaran  Klafter Robert  Miller Mark Steven  Mansur Claire  Mizesko Melissa  Bai Xianhe  LaMontagne Kenneth  Arbiser Jack L
Affiliation:Department of Medicine, Dermatology, Emory University School of Medicine, Atlanta, GQ 30322, USA.
Abstract:BACKGROUND: Implantation of foreign materials into mice and humans has been noted to result in the appearance of soft tissue sarcomas at the site of implantation. These materials include metal replacement joints and Dacron vascular grafts. In addition, occupational exposure to nickel has been shown to result in an increased risk of carcinogenesis. The molecular mechanisms of foreign body-induced carcinogenesis are not fully understood. MATERIALS AND METHODS: In order to gain insight into these mechanisms, we implanted nickel sulfide into wild type C57BL/6 mice as well as a mouse heterozygous for the tumor suppressor gene, p53. Malignant fibrous histiocytomas arose in all mice, and we have characterized the profile of tumor suppressor genes and signal transduction pathways altered in these cells. RESULTS: All tumors demonstrated hypermethylation of the tumor suppressor gene p16, as well as activation of the mitogen activated protein kinase (MAP kinase) signaling pathway. This knowledge may be beneficial in the prevention and treatment of tumors caused by foreign body implantation. CONCLUSIONS: Oxidative stress induced by nickel sulfide appears to cause loss of p16 and activation of MAP kinase signaling. These findings support the hypothesis of synergistic interactions between MAP kinase activation and p16 loss in carcinogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号