首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The aspartimide problem persists: Fluorenylmethyloxycarbonyl‐solid‐phase peptide synthesis (Fmoc‐SPPS) chain termination due to formation of N‐terminal piperazine‐2,5‐diones
Authors:Daniel Samson  Daniel Rentsch  Marco Minuth  Thomas Meier  Günther Loidl
Abstract:Aspartimide (Asi) formation is a notorious side reaction in peptide synthesis that is well characterized and described in literature. In this context, we observed significant amounts of chain termination in Fmoc‐SPPS while synthesizing the N‐terminal Xaa‐Asp‐Yaa motif. This termination was caused by the formation of piperazine‐2,5‐diones. We investigated this side reaction using a linear model peptide and independently synthesizing its piperazine‐2,5‐dione derivative. Nuclear magnetic resonance (NMR) data of the side product present in the crude linear peptide proves that exclusively the six‐membered ring is formed whereas the theoretically conceivable seven‐membered 1,4‐diazepine‐2,5‐dione is not found. We propose a mechanism where nucleophilic attack of the N‐terminal amino function takes place at the α‐carbon of the carbonyl group of the corresponding Asi intermediate. In addition, we systematically investigated the impact of (a) different adjacent amino acid residues, (b) backbone protection, and (c) side chain protection of flanking amino acids. The side reaction is directly related to the Asi intermediate. Hence, hindering or avoiding Asi formation reduces or completely suppresses this side reaction.
Keywords:1  4‐diazepine‐2  5‐diones  Asp‐Gly motif  Asp β  ‐carboxy protection  aspartimides  backbone protection  chain termination  diketodiazepines  diketopiperazines  Fmoc‐SPPS  piperazine‐2  5‐diones  truncated sequences  Xaa‐Asp‐Yaa motif
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号