首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis,characterization, and evaluation of novel cell‐penetrating peptides based on TD‐34
Authors:Tian Tian  Xiaodong Zhang  Yuming Sun  Xiaohui Li  Qing Wang
Abstract:In this study, six N‐1, N‐2, or N‐11 derivatives of TD‐34 (a cationic cyclic cell‐penetrating peptide CPP], ACSSKKSKHCG) were designed and synthesized including both linear peptides and cyclic peptides, such as DL‐1 (KWSSKKSKHCG), DLCC‐1 (cyclopeptide, KWSSKKSKHCG), DL‐2 (KWSSKKSKHCG‐NH2), DLCC‐2 (cyclopeptide, KWSSKKSKHCG‐NH2), DL‐3 (RWSSKKSKHCG), and DLCC‐3 (cyclopeptide, RWSSKKSKHCG). The cyclic peptides were synthesized by disulfide bound linkages formed by N‐2 and N‐10 cysteine. In vitro penetration experiment was conducted to investigate the transdermal enhancement ability of these derivatives, using triptolide (TP) as model drug. The results display that at the presence of DLCC‐2, the accumulative penetration amount of TP increased 1.71‐fold (P < .05) within 12 hours, displaying better transdermal enhancing ability than TD‐34. Meanwhile, DL‐3 and DLCC‐3 slightly decreased the transdermal delivery of TP, and the presence of DL‐1 and DLCC‐1 shows no obvious effect. In order to clarify the factors on the transdermal ability of peptides, the solubility of TP in phosphate buffer saline (PBS) at the presence of different peptides and the mechanism of transdermal delivery of CPPs was investigated. The result shows that most of these peptides have no significant effect on the solubility of TP except DLCC‐3 (the solubility of TP slightly increased). And in order to investigate transdermal absorption route of DLCC‐2, polyarginine linked to rhodamine b (Rh b) derivative is used. The result proved that the transdermal route of polyarginine is via hair follicle, which may change the transdermal route of its cargo molecule (TP). Our group previously proved that polyarginine and TD‐34 have similar transdermal enhancing mechanism (changing the transdermal route of their cargo molecule); it is reasonably speculated that the transdermal route of DLCC‐2 is the same as polyarginine and then changes the transdermal absorption route of TP. Furthermore, such results have laid a solid foundation for further investigation of CPPs and paved a way for both designing and synthesizing of new drug delivery system for therapy molecules.
Keywords:cell‐penetrating peptides  transdermal drug delivery  transdermal enhancement route
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号