首页 | 本学科首页   官方微博 | 高级检索  
     


Laplace's law and the alveolus: a misconception of anatomy and a misapplication of physics
Authors:Prange Henry D
Affiliation:Medical Sciences Program, Indiana University, Bloomington, Indiana 47405, USA. prange@indiana.edu
Abstract:Both the anatomy and the mechanics of inflation of the alveoli, as presented in most textbooks of physiology, have been misunderstood and misrepresented. The typical representation of the acinus as a "bunch of grapes" bears no resemblance to its real anatomy; the alveoli are not independent little balloons. Because of the prevalence of this misconception, Laplace's law, as it applies to spheres, has been invoked as a mechanical model for the forces of alveolar inflation and as an explanation for the necessity of pulmonary surfactant in the alveolus. Alveoli are prismatic or polygonal in shape, i.e., their walls are flat, and Laplace law considerations in their inflation apply only to the very small curved region in the fluid where these walls intersect. Alveoli do not readily collapse into one another because they are suspended in a matrix of connective tissue "cables" and share common, often perforated walls, so there can be no pressure differential across them. Surfactant has important functions along planar surfaces of the alveolar wall and in mitigating the forces that tend to close the small airways. Laplace's law as it applies to cylinders is an important feature of the mechanics of airway collapse, but the law as it applies to spheres is not relevant to the individual alveolus.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号