The direct effect of the thyroid hormone on cardiac chronotropism |
| |
Authors: | M Valente C De Santo P de Martino Rosaroll V Di Maio S Di Meo T De Leo |
| |
Affiliation: | Department of General and Environmental Physiology, University of Naples, Italy. |
| |
Abstract: | To establish whether thyroid hormone modifies the heart rate directly or through an action on other neuroendocrine modulators, the authors have examined several animals models differing in the plasma levels of such compounds. Induction of the hypothyroid state in rats produced a slow onset of bradycardia, which may be removed by a prolonged triiodothyronine treatment. The involvement of TSH was excluded as, by comparing thyroidectomized, hypophysectomized and cold exposed rats, the heart rate was found to vary according to the thyroid levels and not to the TSH levels. Moreover growth hormone, corticotropin and gonadotropins do not influence the heart rate, as the bradycardia induced by hypophysectomy was fully removed by triiodothyronine treatment. The lack of influence by ACTH and GnH was confirmed by treatment of thyroidectomized rats with corticosteroids or testosterone, respectively. Finally, thyroid hormone did not act on the heart rate by changing the norepinephrine output at the sympathetic nerve endings in the heart. In fact, thyroidectomy produced a more intense bradycardia than sympathectomy, and such bradycardia was equally removed by triiodothyronine treatment in thyroidectomized rats and in thyroidectomized and then sympathectomized ones. The authors suggest that the direct effect of the thyroid hormone on cardiac chronotropism is due to an early enhancement of beta-adrenoceptors, followed by a late modification of the electrophysiological properties of the myocardium. |
| |
Keywords: | |
|
|