首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor
Authors:Wilkie Scott  Picco Gianfranco  Foster Julie  Davies David M  Julien Sylvain  Cooper Lucienne  Arif Sefina  Mather Stephen J  Taylor-Papadimitriou Joyce  Burchell Joy M  Maher John
Institution:The Breast Cancer Biology Group, King's College London School of Medicine, London, UK.
Abstract:MUC1 is a highly attractive immunotherapeutic target owing to increased expression, altered glycosylation, and loss of polarity in >80% of human cancers. To exploit this, we have constructed a panel of chimeric Ag receptors (CAR) that bind selectively to tumor-associated MUC1. Two parameters proved crucial in optimizing the CAR ectodomain. First, we observed that the binding of CAR-grafted T cells to anchored MUC1 is subject to steric hindrance, independent of glycosylation status. This was overcome by insertion of the flexible and elongated hinge found in immunoglobulins of the IgD isotype. Second, CAR function was highly dependent upon strong binding capacity across a broad range of tumor-associated MUC1 glycoforms. This was realized by using an Ab-derived single-chain variable fragment (scFv) cloned from the HMFG2 hybridoma. To optimize CAR signaling, tripartite endodomains were constructed. Ultimately, this iterative design process yielded a potent receptor termed HOX that contains a fused CD28/OX40/CD3zeta endodomain. HOX-expressing T cells proliferate vigorously upon repeated encounter with soluble or membrane-associated MUC1, mediate production of proinflammatory cytokines (IFN-gamma and IL-17), and elicit brisk killing of MUC1(+) tumor cells. To test function in vivo, a tumor xenograft model was derived using MDA-MB-435 cells engineered to coexpress MUC1 and luciferase. Mice bearing an established tumor were treated i.p. with a single dose of engineered T cells. Compared with control mice, this treatment resulted in a significant delay in tumor growth as measured by serial bioluminescence imaging. Together, these data demonstrate for the first time that the near-ubiquitous MUC1 tumor Ag can be targeted using CAR-grafted T cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号