首页 | 本学科首页   官方微博 | 高级检索  
   检索      


(Na,K)-pump: cellular role and regulation in nonexcitable cells
Authors:B J Cohen  C Lechene
Institution:New England Deaconess Hospital, Boston, MA.
Abstract:The (Na,K)-pump develops and maintains ionic gradients that are of fundamental importance for proper function of most animal cells. These gradients are utilized in the form of ionic leak pathways by a number of special and general cell processes (e.g., nerve conduction, nutrient transport, pH regulation). As the sodium gradient in particular energizes many vital cell processes, alterations in cell activity will often be manifest as changes in sodium entry. The (Na,K)-pump rate varies accordingly, in order to maintain balance between Na entry and exit thereby maintaining the potential energy of the cell. Acute changes in sodium influx are balanced by increases in activity of existing pump units, with only a small change in intracellular sodium concentration. This is possible because intracellular is normally poised on the steep limb of the concentration versus activity curve for the (Na,K)-pump, at a point well below maximal activity, allowing large increases in (Na,K)-pump rate with only small changes in sodium concentration. If the increase in sodium influx is prolonged, it appears that the cell responds by synthesizing new pumps, allowing intracellular sodium concentration to return to its original values. Though increases in (Na,K)-pump activity must be accompanied by increases in potassium leak rates, in the experiments we have presented, there does not appear to be direct functional coupling between (Na,K)-pump and the K leak pathways. In these situations the matching of active influx and passive efflux of K short-term appears to occur by mechanisms not directly related to (Na,K)-pump activation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号