首页 | 本学科首页   官方微博 | 高级检索  
     


Cooperative alpha-helix formation of beta-lactoglobulin and melittin induced by hexafluoroisopropanol.
Authors:N. Hirota   K. Mizuno     Y. Goto
Affiliation:Department of Biology, Graduate School of Science, Osaka University, Japan.
Abstract:Alcohols denature the native state of proteins, and also stabilize the alpha-helical conformation in unfolded proteins and peptides. Among various alcohols, trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) are often used because of their high potential to induce such effects. However, the reason why TFE and HFIP are more effective than other alcohols is unknown. Using CD, we studied the effects of TFE and HFIP as well as reference alcohols, i.e., methanol, ethanol, and isopropanol, on the conformation of bovine beta-lactoglobulin and the bee venom melittin at pH 2. Upon addition of alcohols, beta-lactoglobulin exhibited a transformation from the native state, consisting of beta-sheets, to the alpha-helical state, whereas melittin folded from the unfolded state to the alpha-helical state. In both cases, the order of effectiveness of alcohols was shown to be: HFIP > TFE > isopropanol > ethanol > methanol. The alcohol-induced transitions were analyzed assuming a two-state mechanism to obtain the m value, a measure of the dependence of the free energy change on alcohol concentration. Comparison of the m values indicates that the high potential of TFE can be explained by the additive contribution of constituent groups, i.e., F atoms and alkyl group. On the other hand, the high potential of HFIP is more than that expected from the additive effects, suggesting that the cooperative formation of micelle-like clusters of HFIP is important.
Keywords:a-helix  β-lactoglobulin  CD  hexafluoroisopropanol  melittin  trifluoroethanol
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号