首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration.
Authors:M R Parkhurst and W M Saltzman
Affiliation:Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218.
Abstract:Leukocytes must migrate through tissues to fulfill their role in the immune response, but direct methods for observing and quantifying cell motility have mostly been limited to migration on two-dimensional surfaces. We have now developed methods for examining neutrophil movement in a three-dimensional gel containing 0.1 to 0.7 mg/ml rat tail tendon collagen. Neutrophil-populated collagen gels were formed within flat glass capillary tubes, permitting direct observation with light microscopy. By following the tracks of individual cells over a 13.5-min observation period and comparing them to a stochastic model of cell movement, we quantified cell speed within a given gel by estimating a random motility coefficient (mu) and persistence time (P). The random motility coefficient changed significantly with collagen concentration in the gel, varying from 1.6 to 13.3 x 10(-9) cm2/s, with the maximum occurring at a collagen gel concentration of 0.3 mg/ml. The methods described may be useful for studying tissue dynamics and for evaluating the mechanism of cell movement in three-dimensional gels of extracellular matrix (ECM) molecules.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号