首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of dephosphorylation of eIF-2(alpha P) and reutilization of mRNA
Authors:A De Benedetti  C Baglioni
Abstract:Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2) causes mRNA to accumulate in 48 S complexes containing Met-tRNAf and eIF-2(alpha P). When the eIF-2 alpha kinase is inhibited by 2-aminopurine, the mRNA is slowly transferred from 48 to 80 S initiation complexes after an initial lag. The cause of this lag was examined by investigating whether mRNA and Met-tRNAf dissociated from 48 S complexes before binding to 80 S. Both compounds were quantitatively transferred from 48 to 80 S complexes after addition of 2-aminopurine and the eIF-2(alpha P) bound to 48 S complexes was dephosphorylated after an initial lag more slowly than unbound eIF-2(alpha P), which was rapidly dephosphorylated. the eIF-2(alpha P) in isolated 48 S complexes was slowly dephosphorylated by partially purified lysate phosphatases, whereas free eIF-2(alpha P) was readily dephosphorylated. These results indicated that 48 S complexes could directly join to a 60 S ribosomal subunit after eIF-2(alpha P) dephosphorylation. The lag and slow kinetics of dephosphorylation of eIF-2(alpha P) bound to 48 S complexes accounted for the slow transfer of mRNA from 48 to 80 S complexes. Moreover, the mRNA bound to 48 S complexes was more susceptible to cleavage by an endonuclease than mRNA in polyribosomes, as shown by activating the (2'-5')oligo(A)-dependent endonuclease. This finding is discussed in view of the possible role of eIF-2 alpha kinase and endonuclease in the inhibition of viral mRNA translation in interferon-treated cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号