首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Peptide internalization enabled by folding: triple helical cell‐penetrating peptides
Authors:Aparna Shinde  Katie M Feher  Chloe Hu  Katarzyna Slowinska
Institution:Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, Canada
Abstract:Cell‐penetrating peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in the development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degradation and limiting length of CPP peptide can lower cytotoxic effects. Here, we present peptides (30‐mers) that efficiently penetrate cellular membranes by combining very short CPP sequences and collagen‐like folding domains. The CPP domains are hexa‐arginine (R6) or arginine/glycine (RRGRRG). Folding is achieved through multiple proline–hydroxyproline–glycine (POG proline‐hydroxyproline‐glycine])n repeats that form a collagen‐like triple helical conformation. The folded peptides with CPP domains are efficiently internalized, show stability against enzymatic degradation in human serum and have minimal toxicity. Peptides lacking correct folding (random coil) or CPP domains are unable to cross cellular membranes. These features make triple helical cell‐penetrating peptides promising candidates for efficient transporters of molecular cargo across cellular membranes. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Keywords:cell‐penetrating peptides  collagen peptides  triple helix  intracellular delivery  internalization  enzymatic degradation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号