首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of abscisic acid on nitrogen partitioning, sucrose metabolism and nitrate reductase activity of chicory suspension cells
Authors:Chraibi  Abdelali; Pams  Benot; Druart  Nathalie; Goupil  Pascale; Gojon  Alain; Rambour  Serge
Abstract:Batch suspension cultures of chicory cells (Cichorium intybusL. var. Witloof) possess a NADH-specific nitrate reductase activitythat peaks on day 3 of a 10 d growth cycle. When both nitrateand ammonium are used as nitrogen sources, chicory cells absorbnitrate irst. Ammonium uptake becomes predominant at day 3,even though NO3 was still present in the medium. Althoughabscisic acid impairs growth as well as 15NO3 uptakeand reduction, it promotes nitrate reductase activity as measuredboth in vivo and in vitro. Specific activity is 50% higher inABA-treated cells than in controls. These conflicting data maybe explained either in erms of nitrate reductase levels or bythe availability of reducing power and energy. Since NRA isgenerally controlled by the availability of the reducing power,the energy status of the cell, the adenylate nucleotide pools,were measured simultaneously with the carbohydrate levels withinthe cell and the growth medium. The energy charge was not modifiedduring the growth cycle, regardless of the rowth conditions.Yet ABA modified the intracellular carbohydrate metabolism andinhibited the acidic invertase, the sucrose synthase and thesucrose phosphate synthase activities. Modified assimilationrates of nitrate in chicory cells grown in the presence of ABA,were probably correlated to modified carbohydrate metabolismpathways leading to increased availability of reducing power,energy and C-skeletons. Key words: Abscisic acid, Cichorium intybus L, nitrate reductase, reductase, invertase, sucrose synthase, sucrose phosphate synthase
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号