Differences in the cation sensitivity of adenylate cyclase from heart and skeletal muscle: modification by guanyl nucleotides and isoproterenol |
| |
Authors: | N Narayanan J W Wei P V Sulakhe |
| |
Affiliation: | Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 0W0, Canada |
| |
Abstract: | Low concentrations of Mn2+ supported the basal adenylate cyclase activity in crude and purified sarcolemmal membranes from cardiac muscle more effectively than did relatively high concentrations of Mg2+; at saturating concentrations the cyclase activities obtained with Mg2+ or Mn2+ were similar. In contrast, Mg2+ supported the basal cyclase activities of crude membrane fractions and purified sarcolemmal membranes from skeletal muscle far more effectively than did Mn2+; at saturating concentrations of either metal ion the Mg2+-supported cyclase activities were 5- to 10-fold greater than Mn2+-supported activities. Further, compared to Mg2+, Mn2+ supported the cyclase activities very poorly in all the primary subcellular fractions of skeletal muscle, whereas this cation was at least as effective as Mg2+ in all fractions of cardiac muscle. The apparent affinities of the cyclase for Mn2+ in heart as well as skeletal muscle appeared to be greater compared to those for Mg2+. The skeletal muscle cyclase displayed greater apparent affinity for MnATP2? (app. Km 0.10 mm) compared to MgATP2? (app. Km 0.32 mm) whereas the heart enzyme displayed greater apparent affinity for MgATP2? (app. Km 0.07 mm) compared to MnATP2? (app. Km 0.19 mm). Following preactivation with guanyl-5′-yl imidodiphosphate and isoproterenol, Mn2+ (0.15 to 2 mm) supported the cyclase activity of skeletal muscle even more effectively than did optimally effective concentrations of Mg2+. With the heart enzyme the relatively greater potency of Mn2+ persisted following preactivation. Significant enhancement in the Mn2+-sensitivity of skeletal muscle cyclase was also observed when assayed in the presence of GTP and isoproterenol or in the presence of NaF. Preactivation of both heart and skeletal muscle cyclases caused selective enhancement in the enzyme's apparent affinity for free Me2+ (Mg2+ or Mn2+) without influencing the apparent Km for MeATP2? (MgATP2? or MnATP2?). Evidences were obtained to show that the poor effectiveness of Mn2+ in supporting the basal activity of skeletal muscle cyclase is not related to (a) potentiation by Mn2+ of adenosine-mediated inhibition of the cyclase, (b) Mn2+-induced lability of the cyclase, (c) indirect effects of Mn2+ on ATP-regenerating system, or (d) the presence of different cation-specific molecular forms of the cyclase. It is also shown that the onset of enhanced Mn2+ sensitivity of the skeletal muscle enzyme following preactivation is not accompanied by a general loss of cation specificity of the cyclase. These results suggest that cations support the catalytic activity of adenylate cyclase by interacting with an enzymeregulatory free metal binding site and that the differential cation sensitivity of nonactivated (basal) cyclases from heart and skeletal muscle is likely due to differences in the properties of such an allosteric metal site. Furthermore, the metal site appears to undergo a conformational change following interaction of the cyclase system with the guanyl nucleotide and isoproterenol since the cation sensitivity of the cyclase and the relative potency of cations depend on the conformational status of the enzyme. |
| |
Keywords: | To whom correspondence should be addressed. |
本文献已被 ScienceDirect 等数据库收录! |
|