首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Belowground ectomycorrhizal communities in three Norway spruce stands with different degrees of decline in the Czech Republic
Authors:Martina Peter  François Ayer  Pavel Cudlín  Simon Egli
Institution:(1) Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland;(2) Institute of Landscape Ecology, Academy of Sciences of the Czech Republic, 370 05 Ceske Budejovice, The Czech Republic
Abstract:We investigated the ectomycorrhizal communities on the roots of adult trees and seedlings associated with three Norway spruce stands in the Czech Republic using morphological and molecular tools. The stands had different degrees of forest decline due to air pollution. The aims of the study were to obtain information about the belowground ectomycorrhizal community in a heavily damaged spruce forest and to assess whether missing ectomycorrhizal fungal partners could be one of the reasons for the observed lack of regeneration. The ectomycorrhizal species richness on the roots of adult trees was significantly lower in the heavily damaged site Mumlavska hora than in the other two, but less drastically so than that found in a fruitbody survey. The roots of adult trees and seedlings were fully mycorrhizal at this site although they were less species-rich. The most abundant ectomycorrhizal species on the root system of adult trees in all three forest stands was Tylospora fibrillosa, a member of the athelioid clade. It made up over 60% of root tips in Mumlavska hora and its proportion was at least twice that in the other two sites. This species was also an efficient colonizer of roots from seedlings, in particular, in the most damaged site. The different soil properties in this site may have caused the observed differences in the ectomycorrhizal species richness and composition. For example, cation exchange capacity and soil base saturation were lower and the soil more often saturated. However, the number of living trees and their defoliation status may well directly impact the ectomycorrhizal species composition by presumably affecting the amount of carbon delivered to the symbiotic fungal partners. Athelioids and thelephoroids are an important component of the belowground ectomycorrhizal community in most temperate and boreal forests, but the role they play might even be more crucial in stressed forest ecosystems. Based on our results, we suggest that factors other than missing ectomycorrhizal inoculum constrain natural regeneration in the heavily damaged site Mumlavska hora.
Keywords:Ectomycorrhizal community  Forest decline  ITS-PCR-RFLP  Inoculum potential  Forest regeneration
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号