首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Direct electron transfer of redox proteins at the bare glassy carbon electrode
Authors:W R Hagen
Institution:Department of Biochemistry, Agricultural University, Wageningen, The Netherlands.
Abstract:A simple system is presented for the microscale, direct voltammetry of redox proteins, typically 25 micrograms, in the absence of mediators and/or modifiers. The sample consists of a droplet of anaerobic solution laid onto an oversized disc of nitric-acid-pretreated glassy carbon as the working electrode. Very reproducible, Nernstian responses are obtained with horse heart cytochrome c. The midpoint potential Em (pH 7.0) is dependent on the ionic strength, ranging from $293 mV in 1 mM potassium phosphate to $266 mV in 0.1 M phosphate. At fixed buffer and cytochrome concentrations the magnitude of the voltammetric response is found to be independent of pH over six pH units around neutrality. It is suggested that the response of the present system is not complicated by pH-dependent properties of the electrode surface around physiological pH and, therefore, that the use of this system is practical in biochemically oriented studies. Direct, quasi-reversible responses have also been obtained at pH 7.0 (5 mM phosphate) from Desulfovibrio vulgaris. Hildenborough strain, tetraheme cytochrome c3 (pI = 10.0 at 4 C; 3 X Em = -0.32 mV, Em = -0.26 V), and cytochrome c553 (pI = 9.3; Em = +60 mV), and from Megasphaera elsdenii rubredoxin (pI congruent to 3; Em = -353 mV). The latter protein absorbs onto the glassy carbon surface, thus forming a system with possible applications in the electrochemical study of ferredoxin-linked enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号