首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolutionarily conserved structural features in the ITS2 of mammalian pre-rRNAs and potential interactions with the snoRNA U8 detected by comparative analysis of new mouse sequences.
Authors:B Michot  N Joseph  S Mazan  and J P Bachellerie
Institution:Laboratoire de Biologie Moléculaire Eucaryote du C.N.R.S., Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France. bmichot@ibcg.biotoul.fr
Abstract:Mechanisms of ITS2 excision from pre-rRNA remain largely elusive. In mammals, at least two endonucleolytic cleavages are involved, which result in the transient accumulation of precursors to 5.8S rRNA termed 8S and 12S RNAs. We have sequenced ITS2 in four new species of the Mus genus and investigated its secondary structure using thermodynamic prediction and comparative approach. Phylogenetic evidence supports an ITS2 folding organized in four domains of secondary structure extending from a preserved structural core. This folding is also largely conserved for the previously available mammalian ITS2 sequences, rat and human, despite their extensive sequence divergence relative to the Mus species. Conserved structural features include the structural core, containing the 3' end of 8S pre-rRNA within a single-stranded sequence, and a stem containing the 3' end of the 12S pre-rRNA species. A putative, phylogenetically preserved pseudoknot has been detected 1 nt downstream from the 12S 3' end. Two long complementarities have also been identified, in sequences conserved among vertebrates, between the pre-rRNA 32S and the snoRNA (small nucleolar RNA) U8 which is required for the excision of Xenopus ITS2. The first complementarity involves the 5.8S-ITS2 junction and 13 nt at the 5' end of U8, whereas the other one occurs between a mature 28S rRNA segment known to be required for ITS2 excision and positions 15-25 of snoRNA U8. These two potential interactions, in combination with ITS2 folding, could organize a functional pocket containing three cleavage sites and key elements for pre-rRNA processing, suggesting a chaperone role for the snoRNA U8.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号