首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soluble and Particulate Organophosphorus Neuropathy Target Esterase in Brain and Sciatic Nerve of the Hen, Cat, Rat, and Chick
Authors:Nieves Tormo  Juan Ramón Gimeno  Miguel Angel Sogorb  Nuria Díaz-Alejo  Eugenic Vilanova
Institution:Department of Neurochemistry, Institute of Neuroscience, Alicante University, Alicante, Spain
Abstract:Considerable evidence exists suggesting that the so-called neuropathy target esterase (NTE) is involved in the mechanisms responsible for organophosphorus-induced delayed polyneuropathy (OPIDP). Earlier studies in the adult hen, the habitually employed experimental model in OPIDP, have shown that most NTE activity in the brain is centered in paniculate fractions, whereas approximately 50% of this activity in the sciatic nerve is encountered in soluble form, with the rest being paniculate NTE. In the present work, we have studied the paniculate and soluble fractional distribution of paraoxon-resistant phenylvalerate esterase activity (B activity), parabxon- and mipafox-resistant phenylvalerate esterase activity (C activity), and NTE activity (B - C) according to ultracentrifugation criteria (100,000 g for 1 h). To this effect, two sensitive (adult hen and cat) and two scarcely sensitive (rat and chick) models were used. In all four experimental models, the distribution pattern was qualitatively similar: B activity and total NTE were much greater in brain (900–2, 300 nmol/min/g of tissue) than in sciatic nerve (50–100 nmol/min/g of tissue). The proportion of soluble NTE in brain was very low (<2%), whereas its presence in sciatic nerve was substantial (30–50%). The NTE/B ratio in brain was high for the particulate fraction (>60%) and low in the soluble fraction (7–30%); in sciatic nerve the ratio was about 50% in both fractions. Slight quantitative differences were observed in terms of OPIDP sensitivity: the proportion of soluble NTE in sciatic nerve was slightly higher in the sensitive animals (hen and cat: 49 and 44%, respectively) than in the rat and chick (41 and 37%, respectively), although no differences were noted in terms of concentration (in nanomoles per minute per gram of tissue). It is concluded that the distribution pattern of the activities studied is similar in all four experimental models, with no important quantitative differences directly related to species sensitivity or age.
Keywords:Neuropathy target esterase  Organophosphorus  Delayed neuropathy  Hen  Cat  Rat  Chick  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号