首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel Pseudomonas putida strain with high levels of hydantoin-converting activity, producing -amino acids
Authors:Kirsten Buchanan  Stephanie G Burton  Rosemary A Dorrington  Gwynneth F Matcher  Zoleka Skepu
Abstract:Optically pure chiral amino acids and their derivatives can be efficiently synthesised by the biocatalytic conversion of 5-substituted hydantoins in reactions catalysed by stereo-selective microbial enzymes: initially a hydantoinase catalyses the cleavage of the hydantoin producing an N-carbamyl amino acid. In certain bacteria where an N-carbamyl amino acid amidohydrolase (NCAAH) is present, the N-carbamyl amino acid intermediate is further converted to amino acid, ammonia and CO2. In this study we report on a novel Pseudomonas putida strain which exhibits high levels of hydantoin-converting activity, yielding -amino acid products including alanine, valine, and norleucine, with bioconversion yields between 60% and 100%. The preferred substrates are generally aliphatic, but not necessarily short chain, 5-alkylhydantoins. In characterizing the enzymes from this microorganism, we have found that the NCAAH has -selectivity, while the hydantoinase is non-stereoselective. In addition, resting cell reactions under varying conditions showed that the hydantoinase is highly active, and is not subject to substrate inhibition, or product inhibition by ammonia. The rate-limiting reaction appears to be the NCAAH-catalysed conversion of the intermediate. Metal-dependence studies suggest that the hydantoinase is dependent on the presence of magnesium and cobalt ions, and is strongly inhibited by the presence of copper ions. The relative paucity of -selective hydantoin-hydrolysing enzyme systems, together with the high level of hydantoinase activity and the unusual substrate selectivity of this P. putida isolate, suggest that is has significant potential in industrial applications.
Keywords:Pseudomonas putida    -amino acids  Hydantoinase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号