首页 | 本学科首页   官方微博 | 高级检索  
     

一具有非线性发生率传染病模型的稳定性和霍普夫分支
引用本文:宋礼,靳祯,孙桂全. 一具有非线性发生率传染病模型的稳定性和霍普夫分支[J]. 生物数学学报, 2009, 24(2): 207-212
作者姓名:宋礼  靳祯  孙桂全
作者单位:中北大学,理学院,山西,太原,030051 
基金项目:the National Science Foundation of China,the Special Scientific Research Foundation for the Subjects of Doctors in University,the Program for New Century Excellent Talents in University 
摘    要:在这篇文章中,我们研究了一具有非线性发生率的传染病模型.该模型经历了鞍结点分支和霍普夫分支.我们对模型的霍普夫分支进行了详细的分析,得知该霍普夫分支是超临界的.此外,我们给出了支持理论分析的数值模拟.

关 键 词:非线性发生率  鞍结点分支  霍普夫分支  超临界

Stability and Hopf Bifurcation in a Epidemic Model with Non-linear Incidence Rate
SONG Li,JIN Zhen,SUN Gui-quan. Stability and Hopf Bifurcation in a Epidemic Model with Non-linear Incidence Rate[J]. Journal of Biomathematics, 2009, 24(2): 207-212
Authors:SONG Li  JIN Zhen  SUN Gui-quan
Affiliation:(Department of mathematics, North University of China, Taiyuan Shan'xi 030051 China)
Abstract:In this paper, we investigate a epidemic model with nonlinear incidence rate β1/2I. It is shown that the model undergoes saddle-node bifurcation and Hopf bifurcation. We perform a detailed Hopf bifurcation analysis to the model, and derive that the direction of the Hopf bifurcation is supercritical. Further, the numerical simulations supporting the theoretical analysis are also given.
Keywords:Nonlinear incidence rate  Saddle-node bifurcation  Hopf bifurcation  Supercritical
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号