首页 | 本学科首页   官方微博 | 高级检索  
     


Syntrophic Degradation of Cadaverine by a Defined Methanogenic Coculture
Authors:Julia Roeder  Bernhard Schink
Affiliation:Fachbereich Biologie, University of Konstanz, D-78457 Constance, Germany
Abstract:A novel, strictly anaerobic, cadaverine-oxidizing, defined coculture was isolated from an anoxic freshwater sediment sample. The coculture oxidized cadaverine (1,5-diaminopentane) with sulfate as the electron acceptor. The sulfate-reducing partner could be replaced by a hydrogenotrophic methanogenic partner. The defined coculture fermented cadaverine to acetate, butyrate, and glutarate plus sulfide or methane. The key enzymes involved in cadaverine degradation were identified in cell extracts. A pathway of cadaverine fermentation via 5-aminovaleraldehyde and crotonyl-coenzyme A with subsequent dismutation to acetate and butyrate is suggested. Comparative 16S rRNA gene analysis indicated that the fermenting part of the coculture belongs to the subphylum Firmicutes but that this part is distant from any described genus. The closest known relative was Clostridium aminobutyricum, with 95% similarity.Cadaverine is a biogenic primary aliphatic amine. Together with other biogenic amines, like putrescine or spermidine, it is formed during oxygen-limited decomposition of protein-rich organic matter by decarboxylation of amino acids or by amination of aldehydes and ketones (8, 27, 30, 42, 53, 54). These putrid-smelling and, at higher concentrations (100 to 400 mg per kg), often toxic compounds play a major role in food microbiology, e.g., as flavoring constituents in the ripening of cheese or as contaminants of fish and meat products, wine, and beer (24, 29, 49).Little is known about the degradation of primary amines. Mono- and diamine oxidases of higher organisms and bacteria (23, 41, 64) initiate aerobic degradation, leading to the respective formation of aldehyde, ammonia, and hydrogen peroxide as products (28). Alternatively, in a putrescine-degrading mutant of Escherichia coli, putrescine is degraded by a putrescine-2-oxoglutarate transaminase and a subsequent dehydrogenase to form 4-aminobutyrate, which is further metabolized via succinate (43).Anaerobic degradation of primary amines could follow basically similar pathways. The released reducing equivalents can be disposed of in a manner similar to that described for primary alcohols (9, 15, 16). In the absence of external electron acceptors, such as sulfate or nitrate, incomplete oxidation of cadaverine to fatty acids or dicarboxylic acids could be coupled to syntrophic methane production, homoacetogenesis, or reductive synthesis of long-chain fatty acids (1, 25, 31).In the present study, we describe a new isolate of strictly anaerobic bacteria which oxidizes cadaverine syntrophically with the methanogen Methanospirillum hungatei and forms acetate, butyrate, glutarate, and methane as products. The enzymes involved in the degradation of cadaverine were identified, and a catabolic pathway is proposed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号