首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evaluation of Recombinant Influenza Virus-Simian Immunodeficiency Virus Vaccines in Macaques
Authors:Amy Sexton  Robert De Rose  Jeanette C Reece  Sheilajen Alcantara  Liyen Loh  Jessica M Moffat  Karen Laurie  Aeron Hurt  Peter C Doherty  Stephen J Turner  Stephen J Kent  John Stambas
Institution:Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia,1. WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia2.
Abstract:There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker β7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.Developing a safe and effective human immunodeficiency virus (HIV) vaccine is one of the defining scientific challenges of our time. Induction of peripheral CD8 T-cell immunity to HIV did not protect against sexual exposure to HIV type 1 (HIV-1) in humans in a recent efficacy trial (11, 43). In simian immunodeficiency virus (SIV)-macaque studies, peripheral CD8 T-cell immunity can effectively control viremia (40) but is often observed to have a transient or limited role in delaying SIV disease in macaques (32). The gradual accumulation of immune escape at CD8 T-cell epitopes undermines the effectiveness of CD8 T-cell immunity to SIV (6, 22, 46). It is likely that inducing mucosal CD8 T-cell immunity to HIV will be more effective at limiting viral replication during the very early phases of acute infection, prior to massive viral dissemination and destruction of large numbers of CD4 T cells (50). The induction of multifunctional mucosal CD8 T cells by live attenuated SIV vaccination of macaques is thought to play a significant role in the success of this strategy (25, 26); however, it is unfortunately too dangerous for clinical trials at present.A series of mucosal viral and bacterial HIV vaccine vectors have been studied in recent years; however, none have yet proceeded to advanced clinical trials. Live attenuated poliovirus vectors have shown promise in SIV studies, but these viruses can in rare cases revert to virulence (14). Salmonella-based SIV vaccine vectors are able to induce CD8 T-cell responses which express the α4β7 integrin mucosal homing marker when administered orally (20, 24). However, there may be a much stronger link between concomitant genital tract immunity and immunity induced at respiratory mucosal sites compared to that induced at enteric sites (33, 38, 42). Vesicular stomatitis virus vectors that replicate in the nasal mucosa show promise in SIV-macaque trials but are potentially neurotoxic (55). Replication-competent adenovirus vectors have looked promising in some SHIV-macaque studies (49) but failed to provide significant protection in a recent SIV-macaque study (17) and could have similar issues of enhanced infection rates as seen in the recent efficacy trials of replication-incompetent adenovirus type 5 vectors.A mucosal vector system that has several advantages over existing models but that is relatively unexplored is recombinant attenuated influenza viruses. Such viruses (i) have an existing reverse genetics system to readily generate and manipulate recombinant viruses (31, 34), (ii) are effective as anti-influenza vaccines and licensed for human use (e.g., “Flumist” vaccine 9]) with ready production capability, (iii) have robust respiratory mucosal replication that should facilitate genital mucosal immunity, and (iv) can be generated with a variety of hemagglutinin (H) and neuraminidase (N) glycoproteins, potentially enabling these viruses to be administered sequentially in prime-boost combinations to limit the effect of antivector humoral immunity (34). Mouse-adapted recombinant influenza virus-HIV vectors have been studied in mice and demonstrated significant induction of cellular immunity at mucosal sites (8, 27, 28, 44, 48). However, although several native influenza viruses replicate efficiently in the respiratory tracts of Asian macaque species (10, 12, 52), no studies to date have examined the immunogenicity or efficacy of recombinant attenuated influenza virus-SIV vectors in macaques.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号