首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cooperative, excluded-site binding and its dynamics for the interaction of gene 5 protein with polynucleotides
Authors:D P?rschke  H Rauh
Abstract:The binding of gene 5 protein to various single-stranded polynucleotides is investigated by fluorescence titrations and stopped-flow measurements. The association state of gene 5 protein itself is analyzed by equilibrium sedimentation: the monomer-dimer equilibrium found in the micromolar concentration range is described by a stability constant of 8 X 10(5) M-1. The fluorescence quenching upon binding to polynucleotides, studied over a broad concentration range and analyzed in terms of a cooperative excluded-site binding model, provides binding constants for "isolated" and for "cooperative" sites. The cooperativity for various ribo- and deoxyribopolymers is between 400 and 800 and is virtually independent of the ionic strength. The binding to isolated sites is strongly dependent upon the ionic strength; analysis in terms of polyelectrolyte theory indicates the compensation of 4 +/- 0.5 charges upon complex formation. The number of nucleotide residues covered by one protein molecule is also found to be 4 +/- 0.5 units. The affinity of gene 5 protein for polynucleotides increases in the series poly(C) less than poly(dA) less than poly(A) less than poly(U) much less than poly(dT); the binding constant for poly(dT) is roughly a factor of 1000 higher than that for the other polymers. Model studies with Lys-Tyr-Lys and Lys-Trp-Lys suggest that the preferential interaction with poly(dT) is not simply due to enhanced stacking interactions between the aromatic amino acids and the thymine residues. Stopped-flow reaction curves obtained by mixing of gene 5 protein with poly(dT) in the micromolar concentration range show three relaxation processes with time constants between 1 ms and 1 s.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号