Differential expression patterns of SUMO proteins in HL-60 cancer cell lines support a role for sumoylation in the development of drug resistance |
| |
Authors: | Margarita Vigodner Jeffrey H. Weisburg Vibha Shrivastava Rebecca A. Marmor Jennifer Fathy Nolan Skop |
| |
Affiliation: | (1) Stern College for Women, Department of Biology, Yeshiva University, 245 Lexington Avenue, New York, NY 10016, USA |
| |
Abstract: | Small ubiquitin-like modifier (SUMO) proteins are involved in a variety of cellular processes. Alterations in SUMO conjugation have been implicated in several human diseases, including cancer. Although the main cause of failure in cancer treatment is the development of drug resistance by cancer cells, the mechanisms of drug resistance are not fully understood. SUMO proteins are thought to play roles in various cellular pathways, but no studies have as yet compared the expression of the different SUMO proteins in chemosensitive and drug-resistant cancer cells. To determine the relationship between protein sumoylation and drug resistance, the expression of various SUMO isoforms has been studied and compared in the HL-60 cell line (a model for leukemic cells) and in HL-60RV cells (resistant to vincristine). Co-immunostaining of cells by anti-SUMO antibodies and antibodies against various nuclear subdomains has been examined by an advanced type of bioimaging analysis. Whereas SUMO-2/3 co-localizes exclusively with nuclear bodies containing promyelocytic leukemia protein in both cell types, SUMO-1 has also been seen in nucleolar regions of HL-60, but not in HL-60RV, cells. In HL-60 cells, SUMO-1 occurs adjacent to, but not co-localized with, the nucleolar marker fibrillarin. Western blot analysis has revealed higher levels of free SUMO and sumoylated products in drug-resistant cells and the presence of specific SUMO-1 conjugates in drug-sensitive HL-60 cells, possibly consistent with a specific nucleolar signal. Shortly after the induction of ethanol and oxidative stress, HL-60RV, but not HL-60, cells show increased accumulation of high-molecular-weight SUMO-2/3 conjugates. Thus, SUMO-1 probably has a specific role in the nucleoli of HL-60 cells, and the alteration of sumoylation might be a contributing factor in the development of drug resistance in leukemia cells. The author thanks Stern College for Women, Yeshiva University and the Joseph Alexander Foundation for supporting this research project. |
| |
Keywords: | SUMO proteins Drug resistance Leukemia HL-60 Cell lines Human |
本文献已被 SpringerLink 等数据库收录! |
|